top of page
​20767-C: Implementing a SQL Data Warehouse 

20767-C: Implementing a SQL Data Warehouse 

20767-C: Implementing a SQL Data Warehouse 

5 Days - Online Instructor Lead

Course Overview

This five-day instructor-led course provides students with the knowledge and skills to provision a Microsoft SQL Server database. The course covers SQL Server provision both on-premise and in Azure, and covers installing from new and migrating from an existing install. 

Course Outline

Module 1: Introduction to Data Warehousing 

This module describes data warehouse concepts and architecture consideration. 

Lessons 

Overview of Data Warehousing 

Considerations for a Data Warehouse Solution 

Lab : Exploring a Data Warehouse Solution 

Exploring data sources 

Exploring an ETL process 

Exploring a data warehouse 

After completing this module, you will be able to: 

Describe the key elements of a data warehousing solution. Describe the key considerations for a data warehousing solution 

 

Module 2: Planning Data Warehouse Infrastructure 

This module describes the main hardware considerations for building a data warehouse. 

 

Lessons 

Considerations for data warehouse infrastructure. 

Planning data warehouse hardware. 

 

Lab : Planning Data Warehouse Infrastructure 

Planning data warehouse hardware 

After completing this module, you will be able to: 

Describe the main hardware considerations for building a data warehouse. Explain how to use reference architectures and data warehouse appliances to. create a data warehouse 

 

Module 3: Designing and Implementing a Data Warehouse 

This module describes how you go about designing and implementing a schema for a data warehouse. 

Lessons 

Data warehouse design overview 

Designing dimension tables 

Designing fact tables 

Physical Design for a Data Warehouse 

Lab : Implementing a Data Warehouse Schema 

Implementing a star schema 

Implementing a snowflake schema 

Implementing a time dimension table 

After completing this module, you will be able to: 

Implement a logical design for a data warehouse. Implement a physical design for a data warehouse 

 

Module 4: Columnstore Indexes 

This module introduces Columnstore Indexes. 

Lessons 

Introduction to Columnstore Indexes 

Creating Columnstore Indexes 

Working with Columnstore Indexes 

Lab : Using Columnstore Indexes 

Create a Columnstore index on the FactProductInventory table 

Create a Columnstore index on the FactInternetSales table 

Create a memory optimized Columnstore table 

After completing this module, you will be able to: 

Create Columnstore indexes. Work with Columnstore Indexes 

 

Module 5: Implementing an Azure SQL Data Warehouse 

This module describes Azure SQL Data Warehouses and how to implement them. 

Lessons 

Advantages of Azure SQL Data Warehouse 

Implementing an Azure SQL Data Warehouse 

Developing an Azure SQL Data Warehouse 

Migrating to an Azure SQ Data Warehouse 

Copying data with the Azure data factory 

Lab : Implementing an Azure SQL Data Warehouse 

Create an Azure SQL data warehouse database 

Migrate to an Azure SQL Data warehouse database 

Copy data with the Azure data factory 

After completing this module, you will be able to: 

Describe the advantages of Azure SQL Data Warehouse. Implement an Azure SQL Data Warehouse. Describe the considerations for developing an Azure SQL Data WarehousePlan for migrating to Azure SQL Data Warehouse 

 

Module 6: Creating an ETL Solution 

At the end of this module you will be able to implement data flow in a SSIS package. 

 

Lessons 

Introduction to ETL with SSIS 

Exploring Source Data 

Implementing Data Flow 

 

Lab : Implementing Data Flow in an SSIS Package 

Exploring source data 

Transferring data by using a data row task 

Using transformation components in a data row 

After completing this module, you will be able to: 

Describe ETL with SSIS. Explore Source Data. Implement a Data Flow 

 

Module 7: Implementing Control Flow in an SSIS Package 

This module describes implementing control flow in an SSIS package. 

 

Lessons 

Introduction to Control Flow 

Creating Dynamic Packages 

Using Containers 

Managing consistency. 

 

Lab : Implementing Control Flow in an SSIS Package 

Using tasks and precedence in a control flow 

Using variables and parameters 

Using containers 

Lab : Using Transactions and Checkpoints 

Using transactions 

Using checkpoints 

After completing this module, you will be able to: 

Describe control flow. Create dynamic packages. Use containers 

 

Module 8: Debugging and Troubleshooting SSIS Packages 

This module describes how to debug and troubleshoot SSIS packages. 

Lessons 

Debugging an SSIS Package 

Logging SSIS Package Events 

Handling Errors in an SSIS Package 

 

Lab : Debugging and Troubleshooting an SSIS Package 

Debugging an SSIS package 

Logging SSIS package execution 

Implementing an event handler 

Handling errors in data flow 

After completing this module, you will be able to: 

Debug an SSIS package. Log SSIS package events. Handle errors in an SSIS package 

 

Module 9: Implementing a Data Extraction Solution 

This module describes how to implement an SSIS solution that supports incremental DW loads and changing data. 

 

Lessons 

Introduction to Incremental ETL 

Extracting Modified Data 

Loading modified data 

Temporal Tables 

Lab : Extracting Modified Data 

Using a datetime column to incrementally extract data 

Using change data capture 

Using the CDC control task 

Using change tracking 

Lab : Loading a data warehouse 

Loading data from CDC output tables 

Using a lookup transformation to insert or update dimension data 

Implementing a slowly changing dimension 

Using the merge statement 

After completing this module, you will be able to: 

Describe incremental ETL. Extract modified data. Load modified data. Describe temporal tables 

Module 10: Enforcing Data Quality 

This module describes how to implement data cleansing by using Microsoft Data Quality services. 

Lessons 

Introduction to Data Quality 

Using Data Quality Services to Cleanse Data 

Using Data Quality Services to Match Data 

Lab : Cleansing Data 

Creating a DQS knowledge base 

Using a DQS project to cleanse data 

Using DQS in an SSIS package 

Lab : De-duplicating Data 

Creating a matching policy 

Using a DS project to match data 

After completing this module, you will be able to: 

Describe data quality services. Cleanse data using data quality services. Match data using data quality services 

De-duplicate data using data quality services.

 

Module 11: Using Master Data Services 

This module describes how to implement master data services to enforce data integrity at source. 

Lessons 

Introduction to Master Data Services 

Implementing a Master Data Services Model 

Hierarchies and collections 

Creating a Master Data Hub 

Lab : Implementing Master Data Services 

Creating a master data services model 

Using the master data services add-in for Excel 

Enforcing business rules 

Loading data into a model 

Consuming master data services data 

After completing this module, you will be able to: 

Describe the key concepts of master data services. Implement a master data service model. Manage master data. Create a master data hub.

 

Module 12: Extending SQL Server Integration Services (SSIS) 

This module describes how to extend SSIS with custom scripts and components. 

Lessons 

Using scripting in SSIS 

Using custom components in SSIS 

Lab : Using scripts 

Using a script task 

After completing this module, you will be able to: 

Use custom components in SSIS. Use scripting in SSIS 

 

Module 13: Deploying and Configuring SSIS Packages 

This module describes how to deploy and configure SSIS packages. 

Lessons 

Overview of SSIS Deployment 

Deploying SSIS Projects 

Planning SSIS Package Execution 

Lab : Deploying and Configuring SSIS Packages 

Creating an SSIS catalog 

Deploying an SSIS project 

Creating environments for an SSIS solution 

Running an SSIS package in SQL server management studio 

Scheduling SSIS packages with SQL server agent 

After completing this module, you will be able to: 

Describe an SSIS deployment 

Deploy an SSIS package 

Plan SSIS package execution 

 

Module 14: Consuming Data in a Data Warehouse 

This module describes how to debug and troubleshoot SSIS packages. 

Lessons 

Introduction to Business Intelligence 

An Introduction to Data Analysis 

Introduction to reporting 

Analyzing Data with Azure SQL Data Warehouse 

Lab : Using a data warehouse 

Exploring a reporting services report 

Exploring a PowerPivot workbook 

Exploring a power view report 

After completing this module, you will be able to: 

Describe at a high level business intelligence 

Show an understanding of reporting 

Show an understanding of data analysis 

Analyze data with Azure SQL data warehouse 

Audience profile 

The primary audience for this course are database professionals who need to fulfil a Business Intelligence Developer role. They will need to focus on hands-on work creating BI solutions including Data Warehouse implementation, ETL, and data cleansing. 

 

Skills gained 

Describe the key elements of a data warehousing solution 

Describe the main hardware considerations for building a data warehouse 

Implement a logical design for a data warehouse 

Implement a physical design for a data warehouse 

Create columnstore indexes 

Implementing an Azure SQL Data Warehouse 

Describe the key features of SSIS 

Implement a data flow by using SSIS 

Implement control flow by using tasks and precedence constraints 

Create dynamic packages that include variables and parameters 

Debug SSIS packages 

Describe the considerations for implement an ETL solution 

Implement Data Quality Services 

Implement a Master Data Services model 

Describe how you can use custom components to extend SSIS 

Deploy SSIS projects 

Describe BI and common BI scenarios 

 

Prerequisites 

In addition to their professional experience, students who attend this training should already have the following technical knowledge: 

Basic knowledge of the Microsoft Windows operating system and its core functionality. 

Working knowledge of relational databases. 

Some experience with database design. 

bottom of page